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Abstract. In this part-review part-new work, studies on branching tube flows are described. These are based on
modelling for increased flow rates as well as on direct numerical simulations and are motivated by applications
to the cardiovascular system, lung airways and cerebral arteriovenous malformations. Small pressure differentials
acting across a multiple branching are considered first, followed by substantial pressure differentials in a side
branching, multiple branching or basic three-dimensional branching. All cases include a comparison of results
between the modelling and the direct simulations. Wall shear, pressure variation, influence lengths, and separation
or its suppression are examined, showing in particular sudden spatial adjustment of the pressure between mother
and daughter tubes, nonunique flow patterns and a linear increase of flow rate with increasing number of daughters,
dependent on the specific conditions. The agreement between modelling and direct simulations is generally close
at moderate flow rates, suggesting their combined use in the biomedical applications.
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1. Introduction

Branchings of fluid flow are extremely common throughout the human body and involve
various complex geometrical configurations and flow conditions associated with different
ranges of Reynolds numbers, pulsatility and wall flexibility. Branchings greatly affect the fluid
dynamics and are common sites of disease. Many previous studies (e.g. [1–3]) address rep-
resentative/modelled aortic or carotid branchings for instance in which typically one mother
vessel bifurcates into only two daughters, with [4] commenting on early generation branches
in the cardiovascular system and in the lungs. Networks due to successive branchings are
also not uncommon, but their modelling to date has not allowed for complex local branching
properties. These settings form one motivation for the current research.

The other main motivation is in the haemodynamics of cerebral arteriovenous malforma-
tions (AVMs) and surgical decision-making on their treatment. In an AVM a feeding artery
undergoes an abrupt splitting into many thin daughter vessels (perhaps 20) with a tangled
geometry which then drain into the venous system. In practice, there are often several arterial
feeding vessels and several draining veins attached to each AVM, but a good starting point is
the single-feed case. The AVM structure is observed to yield small vascular resistance overall
which leads to a total blood flow rate or ‘throughput’ much larger than that normally occurring
between the high pressure arterial and low-pressure venous systems. See [5–8]. AVMs repres-
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ent a major life threat in the form of a stroke, especially to people aged under 50. The surgical
procedures employed, in order to reduce the flow rate through the AVM, include clipping and
glue casting, and are largely empirical, being founded on a wealth of experience and caution.
It could be extremely beneficial to try to understand from a haemodynamical standpoint why
these procedures are effective at lowering the flow rate and if possible how they may be
improved upon. Branchings are of course also important in many other contexts e.g. those
in the preceding paragraph, but the AVM context raises the central haemodynamical question
of how the comparatively large flow rates are produced. Other major features are: the blood
flow survives an expansion of arterial area in a typical AVM without flow reversal/choking; the
inflow pressure is pulsatile whereas the outflow pressure is uniform; an AVM has a profound
effect on the larger network of cerebral blood vessels. These features altogether raise new
fundamental questions in haemodynamics.

Most of the branched flows of interest here are essentially laminar, with Reynolds numbers
up to a few hundred, and can be taken often to be quasi-steady because of the short length
scales near the branching and hence short typical times scales compared with the long-scale
oncoming flow. Again, based on the estimates in [9,10], a predominantly inviscid model seems
justified locally in most settings. This is in contrast to other works on one-to-two branching
flows on a larger scale and related flows which include viscous effects, by [11–15], and
likewise in contrast to longer-scale responses in the AVM model setting.

On networks, models have been proposed for the intracranial blood vessel networks, e.g.
[16,17], incorporating an AVM model, and these also require improved understanding of
the substantial influence from an AVM-like multiple branching on the total contained flow.
Most studies on networks either overlook almost all the details of the haemodynamics at the
individual branchings or use direct numerical simulation for just a few branchings. These
studies include [16–21]. There are numerous other analytical or numerical works within the
overall area, some of which overlap slightly with aspects of the present investigation, e.g.
by [10,22,23]. Particularly noteworthy is the work in [10,24] which is used (e.g. see [21]) in
modelling the lung airways for symmetric branchings (Weibel model, and see [18]) and is
found to work very well within certain limits. Other basics of local branching are in [25].

Flows through multiple branchings, side branchings and others are of interest generally,
then, in terms of the induced wall shear stress, pressure variation, influence lengths, flow
reversal (separation) and total mass flux as well as certain specific issues below. The present in-
vestigations on branching flows arose from several biomedical projects. Analysis and compu-
tation are applied to model problems with the aim of providing greater physical understanding
and perhaps rapid accurate calculations. The modelling, analysis and direct numerical simu-
lations go very much hand-in-hand in the research, as will be seen in subsequent qualitative
or quantitative comparisons throughout.

Direct numerical simulations of the Navier-Stokes equations are manyfold for branching
flows [1–3,10,18–26]. Examples especially relevant in the current setting are in [18,21], the
latter examining planar motion through two successive symmetric branchings, motivated by
application to modelling of lung-airways flow; see also references mentioned earlier. The
branching angles involved in [21] vary from zero to 70◦ and computations are presented for
Reynolds numbers from 200 to 1200, which is a physiologically important range. Compar-
isons with their results are made later in this study. There are relatively few accurate direct
simulations for more complex branchings.

The present aims are to study multi-branching (one mother to many daughters), obtain
insight for several or many generations of branching and provide guidance on network interac-
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tions; we also summarize theoretical modelling based on high throughput (i.e., relatively high
flow rates) but coupled with direct simulations by ourselves and others, along with comparis-
ons. The work is partly review but partly new, specifically in terms of the new comparisons,
the common features found, the new direct simulations on multi-branching flow and the new
three-dimensional flow study. Overall, the approximations of high throughput are found to
work well at Reynolds numbers above about 100 or even lower in practice [9,27–31].

Theoretical and computational aspects provide the focus in the following sections, it being
suggested that their use together could be more beneficial for all the main biomedical contexts.
The sections below also focus on central features of the projects involved. Section 2 considers
the effects from small changes in mass flux or pressure differentials over the O(1) length scale
within a slender multi-branching geometry. The findings lead into the ensuing work in Sec-
tions 3–5, all of which investigate substantial O(1) pressure differentials over an inviscid or a
viscous length scale. Specifying the pressure differentials rather than mass fluxes seems more
realistic in general although that is still open to debate. Again, small and substantial pressure
differentials need defining: broadly ‘small’ corresponds to the majority of the mother tube
flow (e.g. the velocities) being disturbed by only a small relative amount, whereas ‘substantial’
corresponds to the whole flow being altered by an O(1) relative amount. Section 3 is on side
branching, Section 4 reconsiders multi-branching under substantial pressure differentials and
Section 5 is on a basic three-dimensional slender branching of one-to-two form. Most of these
are for steady flow but unsteadiness is included in the side-branching study of Section 3. All
cases in Sections 2–5 include a qualitative or quantitative comparison with a direct numerical
simulation. Section 6 provides final comments.

Technical points. For high throughput there are usually two main length scales, which we
measure here relative to the typical tube diameter. One is O(1) and is associated with the tube
geometry itself, so that the flow structure comprises an inviscid core with thin viscous wall
layers if large-scale separation is precluded. The other major length scale is O(Re), the flow
development length, and corresponds to the viscous layers in effect filling the whole tube;
usually that means an absence of upstream influence over this long scale (but see [27] or be-
low). Both two- and three-dimensional branching-flow models are of concern here, the former
being expressed in terms of suitably nondimensional velocities u, v along the tube axis and
transverse respectively, corresponding stream function ψ , pressure p, Cartesian coordinates
x, y and time t . The typical nondimensionalization is with respect to a representative incoming
tube flow speed u0, tube diameter a0 and the density of the assumed incompressible fluid. In
three-dimensional cases the non-dimensional third velocity component and coordinate are
w, z respectively. The Reynolds number Re is u0 a0/ν where ν is the kinematic viscosity of
the fluid. The branchings considered herein have idealised shapes.

2. Multiple branchings with small pressure changes

This work on the influence of small pressure differentials briefly recapitulates [28] (the main
points only) as that leads into the studies in the following sections, as well as into a new
comparison with direct simulations in this section. The work also relates generically to sev-
eral types of cardiovascular and cerebrovascular branching, including AVMs. It assumes a
nonuniform incident velocity profile u = u0(y) with zero slip at the walls in the single mother
tube upstream and a branching (starting at x = 0 say) into N daughter tubes downstream [28].
Here u0 depends only on y and is positive between the upstream outer walls y = 0, 2. The
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Figure 1a. Sketch of case for two large daughter
tubes, with symmetry about y = 1 and with R

denoting Re.The x axis is in the direction of the ve-
locity u0, and x = 0 at the start of the divider. Here
N = 1, the mother half-width and daughter width
are MW,DW respectively, and the wall shapes (di-
vider, outer, in turn) are given by f −

1 (x), fW (x)

with x of order unity.

Figure 1b. Two large daughter tubes case. Slip-
velocity results calculated from the inviscid core, for
the three incident profiles of plane Poiseuille flow
(1), uniform shear (2) and uniform velocity (3), with
a wedged divider shape of angle ∝ h.

planar geometry and flow are assumed symmetric about y = 1 for convenience, the overall
pressure differentials as imposed from upstream to downstream are taken to be small, and the
outer walls and daughter dividers are all nearly aligned. This, as shown in Figure 1(a) (and
2(a,c)), is consistent with a multi-branching flow structure for x of order unity comprising an
inviscid core in the mother and daughter tubes along with thin O(Re−1/2) viscous layers on the
dividers between the daughter tubes and an O(Re−1/3) viscous outer-wall layer, for large Re,
where the divider thicknesses are taken to be of O(Re−1/3). The scaling here follows from the
inertial-viscous balance u ∂/∂x ∼ Re−1∂2/∂y2 near the outer wall where u ∼ λy, the O(1)

constant λ ≡ u′
0(0) denoting the scaled wall shear upstream.

The core-flow effect is linear, in keeping with the relatively small changes produced by
the small pressure differences and near-alignment, so that u − u0(y) is small and equal to
Re−1/3ũ(x, y) say with ũ of O(1). This 1

3 scaling is due to the divider thicknesses. Hence the
small-perturbation system

u0(∂
2/∂x2 + ∂2/∂y2)ψ̃ = u′′

0ψ̃ (2.1a)

applies, where ũ = ∂ψ̃/∂y, with the stream function perturbation ψ̃ being zero far upstream
and along y = 0, 1 (except possibly for y = 1, x > 0). Also, if the divider walls are given by
y = yn + Re−1/3f ±

n for n = 1 to N, with yn, f
±
n (x) prescribed, while cn denotes the scaled

mass flux value for the nth. divider, then

ψ̃ = −u0(yn)f
±
n (x) + cn at y = yn ± . (2.1b)

The condition (2.1b) is the tangential-flow constraint. The geometry of the branching is pre-
scribed by the scaled divider shapes fn and scaled outer wall shape fW . The internal viscous
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Figure 1c. Two large daughter tubes case. Viscous wall-layer results computed in seven cases 1–7 (in each the
divider shape and wall shape are specified as shown graphically), showing the induced pressures, wall shears and
effective viscous displacements, along with the prescribed divider (dvdr) and wall shapes (gsh) for comparison.
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layers and the outer wall shape fW ≡ f +
0 alike have negligible influence so far. The solution

for ψ̃(x, y) yields a scaled slip velocity uW equal to ũ(x, 0), i.e., ∂ψ̃/∂y(x, 0), at the outer
wall.

The outer wall-layer flow is nonlinear. It has y = Re−1/3(Y + fW(x)) and u, p are
Re−1/3U, Re−2/3P(x) to leading order, leaving the boundary layer system

U = ∂�

∂Y
, U

∂U

∂x
− ∂�

∂x

∂U

∂Y
= −P ′(x) + ∂2U

∂Y 2
(2.2a,b)

with ∂P/∂Y zero from the normal momentum balance. The boundary conditions are

U = � = 0 at Y = 0, (2.2c)

U ∼ λ{Y + B(x)} as Y → ∞, B ≡ λ−1uW(x) + fW(x), (2.2d)

(U,�,P ) → (λY,
1

2
λY 2, 0) as x → −∞, (2.2e)

in view of the no slip requirement at the outer wall and matching with the core and upstream
motions. The system allows separation/flow reversal, if it occurs, to be regular since P is an
unknown.

The argument extends to three-dimensional branchings as described in [28], but these in-
duce a logarithmic effect (where any divider meets the outer wall) in the core which limits the
applicability of the theory in the present setting: compare Sections 3 and 5.

2.1. RESULTS

We focus attention on three specific planar branchings (i)–(iii) for the remainder of this
section.

(i) The first is for two large daughters with symmetry about y = 1, see Figure 1(a). In this
branching the core problem (2.1a,b) can be solved directly by using a Fourier transform in x,
to enable the influences of geometric shapes, the incoming velocity profile, the daughter width
DW relative to the mother width MW , and so on, to be examined. The core solution produces
the inviscid slip distributions uW shown in Figure 1(b) for several different u0 profiles and
a given divider shape, a noteworthy feature being the similarity between the distributions.
Feeding uW into the viscous wall-layer problem via (2.2d) then yields the results for outer
wall shear and pressure shown in Figure 1(c). These are for several distinct cases 1–7, in each
of which the shapes of the central divider (dvdr) and the wall (gsh) are indicated. Cases 1,
2 are examples that have an overall area expansion due to the branching which provokes an
adverse pressure gradient and shear reduction downstream, leading in one case to outer-wall
separation/flow reversal. Cases 3, 4 have area expansions which are different in geometrical
detail, again causing a trend towards flow reversal with a relatively long recirculating eddy
downstream, but upstream the effects are opposite to those of cases 1, 2. Cases 5–7 yield
an overall contraction of area, which forces a favourable pressure gradient and wall-shear
increase downstream.

(ii) The second specific branching is for a small daughter as shown in Figure 2(a), where α

is the daughter width scaled relative to the mother width. The core solution yields the results
for uW /c1 presented in Figure 2(b), as α is varied. The results confirm in particular that most
of the change in uW occurs within a short distance O(α) of the daughter mouth when α is
small, e.g. 0·1 or less, the other distinguished length scale being O(1) ahead of and after the
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Figure 2a. Branching for an increasingly small daughter tube, of width α. The flow structure, with R denoting Re
again.

Figure 2b. Branching for an increasingly small daughter tube, of width α. Computed slip velocity for various α

values from the inviscid core; c1 is the scaled mass flux into the daughter tube.
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Figure 2c. Branching with many small daughters.
For general incident profile u0, the flow structure
with large N , small α, including the main three
streamwise length scales of the mother, mouth and
daughter flows and the two lateral length scales.

Figure 2d. Slip velocity for the case of branching
with many small daughters as N is varied.

mouth. Over the latter global scale the full profile u0 has effect but the daughter acts as a
sink-like disturbance at the wall, whereas over the O(α) local scale the details of the daughter
mouth are apparent and only the incident shear flow λy drives the local flow. Properties in this
branching (ii) prompt the work in Section 3.

(iii) Third is the branching for many small daughters as illustrated in Figure 2(c), where
N � 1 but α 	 1. Now the solution in the inviscid core gives in detail the uW results
in Figure 2(d) as N increases: uW is plotted instead of uW/c1 for clarity. Here again length
scales of orders unity and α operate. The mother flow ahead of the multi-branching at x = 0
poses a half-range problem in which the pressure at x = 0− is given, being prescribed by
the individual daughter flows each of which tends to act alone; between them is the O(α)

region at each daughter mouth. Associated wall-layer features are shown in [28], indicating in
particular that this multi-branching can permit enhanced turning of the overall flow without
significant flow reversal. The findings for (iii) prompt the study in Section 4.

2.2. COMPARISONS

Qualitative comparisons can be made with the direct simulations in [21] over their Re-range
200 to 1200, for a fixed geometry with typical turning angle α = π/6 at successive wedge-
like branchings. At Re = 200, 500 confined recirculatory eddies are found in their Figure 3 at
most of the outer walls after each branching, and the eddy lengths increase with increasing Re.
In contrast, the wall shear is enhanced both on the outer wall ahead of the branching and on
the inner divider wall. The reversed-flow trend is such that at Re = 900, 1200 one outer-wall
eddy extends downstream to the next branching and joins with the next outer-wall eddy, while
others continue to elongate. (A new eddy also forms at Re of 1200). These features of the
simulations seem supportive of the theory for branching type (i) which does indeed predict
increased outer-wall flow reversal as Re increases; see also [21, Figure 4]. The theory also
predicts (e.g. see Figure 1(c)) enhanced wall shear upstream of branching and on the dividers,
as in the simulations [21]. Moreover the extra turning produced by successive branchings in
[21] without excessive reversals arising also, is in keeping with the theory for (iii) above. The
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Figure 3c. A direct simulation for the geometry
shown. Here Re = 222.

Figure 3a. The flow configuration for streamlined
branching of a relatively small daughter from a
mother tube, with incident shear flow, in nondimen-
sional form.

Figure 3b. As in Figure 3a, but for steady or pulsatile
planar motion, showing the viscous regions (i)–(iii)
and the wall shapes f1 − f4.

Figure 4. Planar model results for side-branching. In (a),(b): shear τ at walls f1, f2, f4 and pressures P versus
x, in regions (i)–(iii) respectively, for two values of a1. Comparisons with limit predictions (denoted by r) are
included.

comparative smallness of the critical Re for flow reversal, about 100, for an α value of π/6 in
[21] is not inconsistent with the predicted O(Re−1/3) scale for α.

3. Side-branching with substantial pressure changes

The study here of slender side-branching stems from the special case (ii) in the previous
section and again has potentially wide generic application. The work is based on [27] and
is presented, albeit in brief, as it connects with that in the next section as well as with (ii)
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above. Now however the pressure differences imposed are taken to be relatively substantial
and the size of the small daughter or side-branch is reduced such that it all lies within the
viscous near-wall layer as in figure 3(a,b). The essential difference in modelling between
smaller and more substantial pressure changes, in the present setting, is that here a viscous-
inviscid balance of effects describes the motion almost everywhere. Figure 3(a) shows a three-
dimensional side branch, while Figure 3(b) shows the two-dimensional case, with the mother-
flow regions (i), (ii), in the present nondimensional form based on the incident shear and the
main streamwise length scale of the branching . The incident mother shear flow is uniform
because of the near-wall position and size of the daughter. The imposed pressure within the
daughter at some position x = x2 downstream of the daughter entrance x1 is denoted by P∞,

the mother pressure upstream being taken as zero, and f1 − f4 are the known normalized
wall shapes, again in coordinates x and normalized y or Y , whereas the scaled thickness a1

of mother fluid that is entrained into the daughter is unknown. The constants λ, L∗/	∗ denote
the normalized shear and a ratio of the daughter-mouth dimensions respectively. Figure 3(c)
presents a result from a direct simulation [27] at a moderate value of Re, showing the wall
pressures. Most noteworthy is the apparent jump or rapid spatial change in pressure close to
the mouth of the side-branch.

The explanation for the jump is as follows. For sufficiently large Re the slender-layer
equations (2.2a,b) hold almost everywhere, subject to standard boundary conditions of no
slip at each wall, and these suggest parabolic dependence, in the direction forward from the
uniform-shear condition given upstream. Yet such a parabolic dependence on its own must
usually violate the required downstream condition

P − = P∞ at x = x2 (3.1)

in the side branch, in which the pressure is P −. The only resolution for this is that a discon-
tinuity (jump) has to be present, specifically at the mouth x = x1±, achieved by means of a
local essentially inviscid Euler zone which conserves mass and pressure head,

� and P + 1

2
U 2 are conserved, (3.2)

along streamlines; then P,U 2 individually can jump across the zone (x → x1±). The jump
here is supported by the local configuration of the surfaces f1, f3, f4 combined with the
incident shear. A jump cannot be sustained across any station x other than x1.

The model system incorporating (3.1),(3.2), and thus predicting jumps in P and wall shear
τW or τ , was solved numerically in two and three dimensions by rapid forward marching,
sample results being given in Figures 4, 5 for steady planar motion. The two cases shown
in the mother and side-branch solutions for τ, P in Figure 4 are for two different values
of the entrainment parameter a1. Also presented are analytical results [27] for comparison.
Figure 5(a) then shows comparisons with direct simulation results [27] for pressure and wall
shear at moderate Re for an individual case, while Figure 5(b) covers a range of cases (corres-
ponding to different entrainment values) according to the model and compares with the direct
simulation values obtained for two of those cases. The agreement is encouraging throughout.

The study in [27] also includes unsteady, three-dimensional and higher suction effects. This
last effect provokes a sink-like behaviour at the branch mouth, the sink strength increasing
with P∞ and hence with a1 and gradually generating substantial upstream influence. The
influence is favourable, in the sense of reducing or suppressing any upstream separation.



Fluid flow through various branching tubes 287

Figure 5a. Direct numerical simulations of the
Navier-Stokes equations for side-branching. Wall
shear stress, wall pressures. This includes results
from the theory (modelling), for comparison.

Figure 5b. Direct numerical simulations of the
Navier-Stokes equations for side-branching. Further
comparisons: theoretical results for end shears τ∞
and pressures P∞(labelled 1,2 in turn) in the daugh-
ter side-branch (iii) as a1 varies. This includes values
from simulations, shown as circles.

Downstream separation allows some fluid particles to flow past the side-branch before being
dragged back into it.

4. Multi-branching with substantial pressure changes

Here the scaled pressure differentials are O(1) and the local geometry is not necessarily
slender, by contrast with the branching flows studied in Section 2. This account again builds
on the two length scales described in Section 1 but the focus is on the local x ∼ 1 scale. The
biological/medical motivation is mainly in the application to AVM haemodynamics.

The theory in [9] is for planar flow in the branching geometry of Figure 6(a). In nondi-
mensional terms, a single mother tube, of width 1 and containing fully developed incident
flow of unknown total mass flux λ, branches locally into N daughter tubes of total width A

(‘area’) at large positive x; in the figure N is 5. The exit velocities u1 to uN in the daughters
are unknown. The branching shape involves arbitrary O(1) slopes and is prescribed, as are the
daughter pressures π1 to πN downstream, which are measured relative to the upstream mother
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Figure 6a. Multi-branching with substantial pressure changes: model. Sketch of the branching flow from the
mother velocity profile ψ ′

0(y) to N separate daughter profiles ui downstream, with y measured laterally across
each tube. In this case N = 5.

pressure. The latter is taken as zero. The orders of magnitude point to an inviscid response in
the absence of significant separation.

Conservation of mass and pressure head are applied in each daughter, effectively as in
(3.2), to determine λ under various area and pressure settings by means of a set of nonlinear
recurrence relations and ordinary differential equations, with all the ui for i = 1 to N being
assumed positive. In consequence, the problem takes the form

A =
N∑

i=1

∫ ψ+
i

ψ−
i

dψ

{ψ ′
0(ψ

−1
0 (ψ))2 − 2πi}1/2

, (4.1)

where the size of the incident stream-function profile ψ0 is to be found (the factor λ) together
with the stream-function values ψ±

i on the walls of each daughter. The calculated response of
λ as the prescribed area A is varied is given in Figure 6(b) for two types of pressure settings.
The first has all the pressures πi being negative, in which case a unique non-separated flow is
predicted for any N throughout the interval 0 < A < 1; the figure shows results for a range
of N values along with asymptotes labelled I–III which stem from (4.1) for A → 0, A →
1, N → ∞ respectively and provide a comparison. This type allows no solution if A is unity
since the implied increase in u2 and hence u is then incompatible with the total mass-flux
requirement. The second type has at least one πi being positive and that leads to restrictions
on the left and right as non-separated flow is found to be impossible if A is too small or too
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Figure 6b. Multi-branching with substantial pressure
changes: model. Flow rate λ versus flow area A, for
two πi pressure distributions, with equal daughter
areas and various N . Curves I-III are asymptotes.
Pressures πi are (a) (−1, −6, −5, −6, −5, . . . , −1);
(b) (−1, −1, 4·5, 5·5, 4·5, 5·5, . . . , −1, −1).

Figure 6c. Multi-branching with substantial pressure
changes: model. For A = 1, mass flux λ against
N in four cases each with equal daughters: πi =
(−1, −1, b, c, b, c, . . . ,−1, −1) for b, c values of
(i) 5, 5, (ii) 4·5, 5·5, (iii) 3, 4, (iv) 2, 2.

large; non-uniqueness can also arise then, as indicated in our Figure 6(b) and in [9, Figure 3]
which demonstrates the notably different flow profiles predicted downstream. Concerning the
restrictions above, in practice the flow may separate substantially or the velocity ui may be
reversed for some i values, negating the above analysis: see direct simulations below and the
comments at the end of the paper. Figure 6(c) shows the dependence of λ on N for given
pressure settings all of the second type and given area A, in four cases (i)–(iv). A remarkable
feature is the linear increase of the total flux λ with increasing number of daughters N , in
every case, for N above about 4. This and the asymptotes mentioned previously are analyzed
in [9].

In broader terms, for instance in a complete AVM model, the πi values themselves are
governed by interaction between the shorter-scale inviscid problem above and the viscous
development over the longer O(Re) length scale (Section 1). This feedback is akin to that in
the side-branching studied in Section 3, and [9] investigates one example of it.

Direct simulations were performed more recently to test some of the predictions above.
The method is described in Appendix A. Sample results are given in Figure 7(a–c) and further
ones are to be reported in [30]. Figure 7(a) has a moderate Re value and all the downstream
daughter pressures except one are below the upstream mother pressure. The single daughter
with a raised pressure is found to yield reversed flow in that daughter alone, as might be
expected physically. Figure 7(b), again with a moderate Re, has a different distribution of
downstream pressures but again only one is above the mother value. Nevertheless, forward
flow is now produced in every daughter including the one with raised pressure. The reason
lies with the comparatively low pressures in the other daughters in this case which generate
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Figure 7a and Figure 7b. Multi-branching with sub-
stantial pressure changes: direct simulations and
comparisons. (a) Streamwise velocity profiles at
Re = 50 for a symmetric case with N = 9
branches. Upstream pressure p is set to be 1 while
downstream p = −1, 0, 2,−1, −1 in turn from top
to bottom. Axes: x horizontal, y vertical. (b) As
(a) but with downstream pressures given by p =
−1, −4, 1.5,−5, −5 in turn.

Figure 7c. Multi-branching with substantial pres-
sure changes. Comparisons of mass flux at
Re = 10, 30, 60 (− − − from simulations) with
the model analysis (+) (see Figure 6(b)’s case
(a)), for varying downstream areas. Here N =
11 and the downstream pressures are p =
−1, −6, −5, −6, . . . ,−5, −6, −1.

momentum at order-one x values sufficient to drive fluid into the raised-pressure daughter,
i.e., almost the ‘wrong way’ based on an overall pressure argument. We note that the daughter
pressure conditions here are perhaps imposed at a relatively short distance downstream in
terms of the longer scale mentioned in the preceding paragraph. Results from direct simulation
and modelling are compared in Figure 7(c) over a range of areas A, showing fair agreement
as Re increases.

5. Three-dimensional branching with substantial pressure changes

The three-dimensional branching geometry and flow are now taken to be slender (see [31]),
while the O(1) pressure differentials are imposed over the long viscous length scale. We
focus on the archetypal problem of steady flow through a Y bifurcation of small angle, i.e., a
one-to-one branching of a mother into two diverging daughters. Previous theoretical studies
[11–13,15,28] concentrate mostly on the shorter length scale (Section 1), usually with zero
bifurcation angle.

The slender-flow equations on the O(Re) length scale where x = XRe (denoting distance
along each tube or branch) and (v,w) = (V ,W)/Re are, as in [11],

uX + Vy + Wz = 0, (5.1a)

uuX + V uY + WuZ = −p′
0(X) + ∇2u, (5.1b)

uVX + V Vy + WVz = −p1y + ∇2V, (5.1c)

uWX + V Wy + WWz = −p1z + ∇2W, (5.1d)

where ∇2 now denotes (∂2
y + ∂2

z ) and u, V,W,X, y, z, p0, p1 are O(1). The pressure is p0 +
Re−2p1, with p0 being independent of y, z from the cross-sectional (y, z) momentum balance.
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Figure 8. Three-dimensional branching from a circular mother to two semi-circular daughter tubes. Dir-
ect-simulation results in the cross-plane at Re = 100.

There is no upstream influence on this scale provided that flow symmetry is preserved (non-
symmetry by contrast provokes local adjustments as in Sections 3, 4), u remains positive and
the total flux is given (see below). The incident mother profile acts as a starting condition for
each daughter flow, which can be determined in parabolic fashion by marching forward in X.
Solutions of (5.1a–d) subject to standard no-slip conditions at the walls have been calculated
by finite differencing applied to u, V,W and the cross-sectional vorticity function [11], p1

being eliminated by cross-differentiation in (5.1c,d). In principle any cross-sectional shape
can be dealt with in the numerical scheme that has been developed; the calculations are based
on a displaced Cartesian grid coupled with interpolation at the walls. The program is run
with either the total mass flux prescribed or an upstream-to-downstream pressure differential
prescribed, the latter being accommodated by iteration.

Direct simulations were also conducted, as detailed in Appendix B. See Figure 8 which
shows results for a circular mother and two semicircular daughters.

Comparisons between the simulations and the slender-flow results are summarized in Fig-
ure 9. This plots the normalised shear stress on the midway line of the divider against nor-
malized distance along the daughter, for the circle-to-semicircle bifurcation, according to the
theory and simulation at Re of 100. The agreement is quite close. Continued computations
and comparisons are planned [31] for more divergent daughters to increase the potential
application.
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Figure 9. As Figure 8 but comparing results of analysis/modelling (solid, universal curve) and direct simulation at
Re = 100 (circles), for normalized wall shear on the divider midway line plotted against scaled distance X within
a daughter. Again X is measured from its zero value at the start of the divider.

6. Conclusions

We have examined the effects of both small pressure differentials, in multi-branching (Sec-
tion 2), and substantial pressure differentials, in side-branching and a basic three-dimensional
symmetrical branching as well as multi-branching (Sections 3–5). This has been through a
combination of theory and computation throughout. That combination, partly from existing
works and partly from new work, is encouraging in terms of building up more understanding
over a broad range of flow rates and pressure conditions. The flow features found include
abrupt spatial adjustment of the pressure between mother and daughter tubes, nonunique flow
patterns and a linear increase in throughput as the number of daughters is increased.

The theory/modelling may involve significant simplifying assumptions and hence limit-
ations, but direct simulation although powerful likewise has limitations, for example on the
sensitivity to input data of wall shape, end conditions and boundary conditions which are
difficult to prescribe in practice, and on the handling of one case (patient) at a time. Theory
and direct simulation together seem to offer much more however. The theory yields parameter
ranges, generic properties, wider applicability in principle and extra insight, suggesting that
the combination of theoretical modelling and direct simulation may improve the chances of
increased progress.
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Concerning detail, there is some dependence on the specific conditions of course. A sample
detailed point on specific conditions concerns the behaviour Q ∼ κN of the mass flux Q as
the number N of daughters increases, in the context of Section 4, where κ is a constant.
In the two cases studied with downstream pressures (−1,−1, b, . . . , b,−1,−1) the value
of κ can be shown [9] to be 6b/

√
8, which agrees well with the numerical results, but the

pressure constant b must be positive, and generally the dependence of the flow solution on the
thin nonlinear layers at the outermost walls is delicate. Other aspects peculiar to the different
branchings are clear in the preceding sections.

It is perhaps still too soon to apply the modelling direct to cardio- or cerebro- vascular
flows, especially in a patient-specific sense. Further research is needed on the modelling side,
e.g. to broaden the range of conditions covered, such as for other pressure differences, to
accommodate more three-dimensional effects including swirl, multi-branching, and branching
through successive generations or even a network, and possibly to incorporate more realistic
vessel shapes. The branching-flow symmetry present in the three-dimensional flow study
of Section 5 is significant in the modelling in the sense that the full nonsymmetric three-
dimensional case is much more difficult to analyze, owing to local pressure jumps akin to those
of Section 3. One promising approach there could be based on the flow structure described in
Section 3 but incorporating so-called opposite wall effects [27]. More complex geometry also
poses a considerable challenge. Work has begun on applying the three-dimensional slender-
flow approach of (5.1a–d) to less idealized shapes, on upstream-shaping effects (compare
[18]) and on extending the comparisons of Sections 4, 5 to encompass nonzero angles in both
the simulations and the modelling. Concerning networks and their related interactions, an
obviously important role is played by the two main long (viscous) and short (predominantly
inviscid) length scales, i.e., global and local respectively; this is seen in Section 3 which has
both long and short scales, linked by pressure adjustments, in Section 4 which focusses on the
short-scale response, and in Section 5 which is on the long-scale response. It is felt that some
encouragement for such further research is provided by the present study.
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Appendix A. Direct-simulation method for two-dimensional multi-branching

This appendix outlines the direct numerical method used in the two-dimensional branching
problem of Section 4 with prescribed pressures in the mother and each of the daughter tubes.
See also [32,33]. The geometry is a single mother upstream between y = −1 and y = 1
which splits into n equal sized daughters at x = 0. The upstream and downstream limits at
which the pressures were imposed were taken to be at x = −1, x = 1 respectively. We make
use of the x-momentum equation

uux + vuy = −px + 1

Re
∇2u, (A1)

the Poisson equation for the pressure

−∇2p = 2(uyvx − uxvy), (A2)
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and the continuity equation. Here (A1), (A2) are discretised using standard second-order ac-
curate centred differences. Also, in order to avoid evaluating p at the leading edges of the
branches, near those edges we skew the grid using the points at x + y, x − y instead of x, y.
A significant issue in using the continuity equation is that we are aiming to solve a first-order
differential equation but with two boundary conditions, e.g. v = 0 on both the outer walls.
We accommodate this by discretising the continuity equation as in [32], effectively solving it
as a two-point boundary value problem, together with iteration. Thus the continuity equation
becomes

3vij−1 − 4vij + vij+1 = ri, (A3)

where

ri = 1

3
(ui+1,j+1 − ui−1,j+1) + 2

3
(ui−1,j − ui+1,j − ui+1,j−1 + ui−1,j−1) (A4)

and i, j refer to grid points in the x, y directions respectively. The boundary conditions u =
v = 0 on the walls can then be imposed on the normal velocity simply by requiring vij = 0 at
both y = ±1. Upstream, the form

u = Q

4
(1 + y)(1 − y), v = 0 (A5)

is taken as in the high Reynolds number case of Section 4. Downstream, we impose ux =
0. Upstream in the mother and downstream in each daughter the values of the pressure are
also prescribed. The wall conditions for the pressure are obtained from (A2) and the known
velocity values. This leads to the requirement that

py = vyy

Re
on the walls. (A6)

An alternative approach which was also implemented exploited (A1) along the walls. We then
have a first-order differential equation but with the values of the pressure known at each of the
end points. We can therefore solve as for (A3), to obtain the pij values along the wall from

3pij−1 − 4pij + pij+1 = si, (A7)

where si depends upon the local velocity values. Using this approach on the outer walls
proved successful, yielding essentially the same pressure distribution as for (A6). Unfortu-
nately we were unable to achieve the same on the internal divider walls due to the leading
edges present. Using this latter method proved more stable however when iterating to obtain
the flow solution.

The iteration procedure involved iterating the p and u solutions first, leaving v unchanged.
Then p was left unchanged while the current u and v guesses were converged, before the
p and u iteration was repeated and so on. This was found in practice to be the most stable
way of performing the iterations. After an initial guess, Q is found iteratively by imposing
conservation of mass through calculating the total mass flux downstream and setting the next
Q guess, so that the mass flux into the mother tube balances the mass flux out through the
daughters. As Re was increased, better initial guesses were required to achieve convergence;
converged solutions for lower Reynolds number were used. The computations reached Re of
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around 100 for some geometries and pressure distributions but considerably lower (60–100)
in others.

The results of this method at various Re are compared with the large Re analysis in Fig-
ure 7(c). Smaller downstream areas were obtained (i.e., A < 1) by simply shutting off some
of the downstream area nearest the outer wall, effectively shutting off a daughter tube.

Appendix B. Direct-simulation method in three dimensions

The unsteady three-dimensional incompressible Navier-Stokes equations were solved using
a parallel time-accurate finite-volume solver. The solver is capable of dealing with moving
boundaries, moving grids and complex three-dimensional vascular systems. The computa-
tional domain is divided into multiple block subdomains. At each cross section the plane
is divided into twelve sub-zones to allow flexibility for handling complex geometries and,
if needed, appropriate parallel data partitioning. A second-order in time and third-order up-
wind finite volume method for solving time-accurate incompressible flows based on pseudo-
compressibility and dual time-stepping technique is used. Performing a series of numerical
simulations validated this code. The results of these simulations, representative of typical
biological flows, have been compared with theoretical and experimental results.

In the numerical method, the equations in strong conservative form are written in a gener-
alized curvilinear coordinate system, such that

∫
V (t)

∂q
∂τ

dV + ∂

∂t

∫
V (t)

Q dV +
∫

S(t)

(=
f − Qvg

)
· n̂ dS = 0, (B1)

where
=
f = (F + Fv, G + Gv, H + Hv) and

Q =




u

v

w

0


 , q =




u

v

w

p


 , F =




u2 + p

uv

uw

βu


 , G =




vu

u2 + p

vw

βv


 , H =




wu

wv

w2 + p

βw


 ,

Fv = − 1

Re




2ux

uy + vx

uz + wx

0


 , Gv = − 1

Re




vx + uy

2vy

vz + wy

0


 ,

and

Hv = − 1

Re




wx + uz

wy + vz

2wz

0


 . (B2)

Here t denotes the real physical time, τ is the pseudo time, and β is the pseudo-compressibility
coefficient, while V (t) is the time varying volume of the cell, S(t) denotes the surface of the
control volume and n̂ is the outward unit normal vector at the surface of the control volume,
where vg is the local velocity of the moving control surface. The term q associated with the
pseudo time is designed for an inner sub-iteration at each physical time step and vanishes
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when the divergence of velocity is driven to zero so as to satisfy the equation of continuity.
For a structured boundary-fitted computational coordinate system (ξ, η, ζ ) and a cell-centred
finite volume formulation, we can write Equation (B1) in a semi-discrete form for each cell
centred at points (i, j, k),

St
∂

∂t

[
V Q

]
ijk

+ Rijk + StVijk

(
∂q
∂τ

)
ijk

= 0. (B3)

Here the steady state residual is given by

Rijk =
(≈

F+≈
Fv

)
i+ 1

2 ,j,k

−
(≈

F + ≈
Fv

)
i− 1

2 ,j,k

+
(≈

G + ≈
Gv

)
i,,j+ 1

2 ,k

−
(≈

G + ≈
Gv

)
i,j− 1

2 ,k

+
(≈

H + ≈
Hv

)
i,j,k+ 1

2

−
(≈

H + ≈
Hv

)
i,j,k− 1

2 .

Also, the modified flux terms are defined as

≈
F + ≈

Fv =
(=

f − StQ vg

)
· S

ξ

n,
≈
G + ≈

Gv =
(=

f − StQ vg

)
· S

η

n,

≈
H + ≈

Hv =
(=

f − StQ vg

)
· S

ζ.

n (B4)

The normal-area vector in the ξ -direction is

S
ξ

n = [
Sξ

nx, S
ξ
ny, S

ξ
nz

]
. (B5)

In the above formulation the flow Strouhal number is defined as St = D/(Ureftref). The
physical time derivatives are differenced using the second order trapezoidal implicit method,
while first order Euler implicit differencing is used on the pseudo-time derivatives. The invis-
cid fluxes are differenced using third-order upwind implementation of Roe’s flux-difference
split averaging technique. Second order central differencing is used on the viscous fluxes. To
maintain second order spatial accuracy a special treatment at the boundaries is required. For
more detail on other aspects of the numerical technique see [34–38].

To generate the branch model (concerning Section 5) and its appropriate grid, a main
mother tube of 5 diameters in length from the main inlet to the bifurcation point is chosen.
After the bifurcation plane, each daughter tube is also extended by 5 MD (mother tube dia-
meter) to the outlet. In this study, only symmetric bifurcations are considered. However, since
we solve over a full grid comprising the entire branch, the method is capable of solving for
any nonsymmetry in shape, size, branch angle and any tube differences in general. In all the
present examples we only consider the case of splitting the mother tube in half from the centre
line by any given half angle. In the mother tubes, we use a 38 × 51 × 15 grid, which implies
using 38 cells in the tube axial direction by 51 cells in the azimuthal direction and 15 cells in
the radial direction at each cross section of the tube. In each of the daughter tubes a 55×75×20
grid is used. We use appropriate grid stretching near the walls in the radial direction and near
the bifurcation region in the axial direction. The above grid was the finest grid used in our
grid resolution studies, which assured virtually unnoticeable change from the next coarse grid
considered. All the computational results are achieved by allowing the residual on velocities
to drop to 10−16 and the residual on mass conservation drop to 10−13.
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